
MME 3307 Glass and Glass ceramics

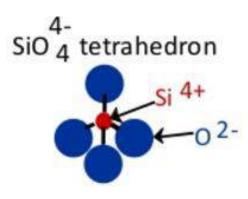
Part 1

Outline

- Glass Structure
- Glass properties
- Glass types
 - Soda lime glasses
 - Lead glasses
 - Heat-resistant/borosilicate glassess
 - High purity silica glasses
 - Specialty glass
- Glass manufacturing Process
- Glass forming
- Heat treating Glasses
 - Annealing glass
 - Tempering glass

Taxonomy of Ceramics

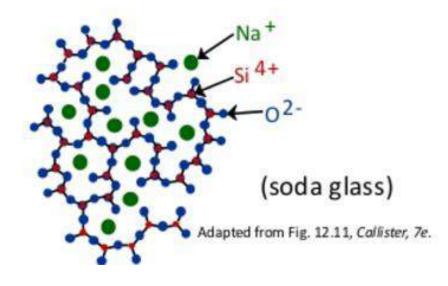
Glasses


- A glass can be defined as an inorganic product which has cooled to rigid structure without crystallization.
- Glass is hard material normally fragile and transparent common in our life.
- Glass-ceramics have an amorphous phase and one or more crystalline phases and are produced by a so called "controlled crystallization" in contrast to a spontaneous crystallization
- Glass-ceramics are mostly produced in two steps:
 - First, a glass is formed by a glass manufacturing process.
 - The glass is cooled down and is then reheated in a second step. In this heat treatment the glass partly crystallizes
- Two prime characteristics of glass are their optical transparency and the relative ease with which they may be fabricated.

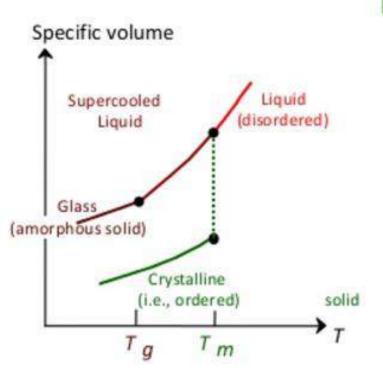
Amorphous Ceramics (Glasses)

- Main ingredient is Silica (SiO2)
- If cooled very slowly will form crystalline structure.
- If cooled more quickly will form amorphous structure consisting of disordered and linked chains of Silicon and Oxygen atoms.
- This accounts for its transparency as it is the crystal boundaries that scatter the light, causing reflection.
- Glass can be tempered to increase its toughness and resistance to cracking.

Glass Structure


Basic Unit:

Quartz is crystalline
 SiOz:


- Glass is amorphous
- Amorphous structure occurs by adding impurities (Na⁺,Mg²⁺,Ca²⁺, Al³⁺)
- Impurities:

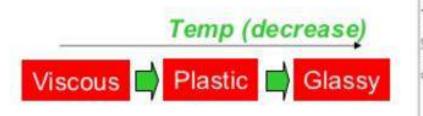
interfere with formation of crystalline structure.

Glass Properties

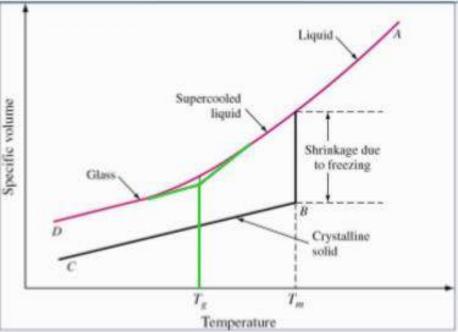
Specific volume (1/ ρ) vs Temperature (*T*):

Adapted from Fig. 13.6, Callister, 7e.

Crystalline materials:

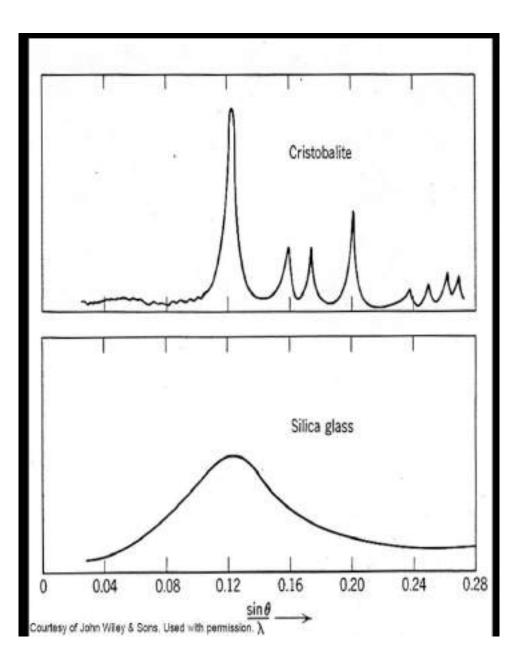

- crystallize at melting temp, Tm
- have abrupt change in spec. vol. at
- Tm

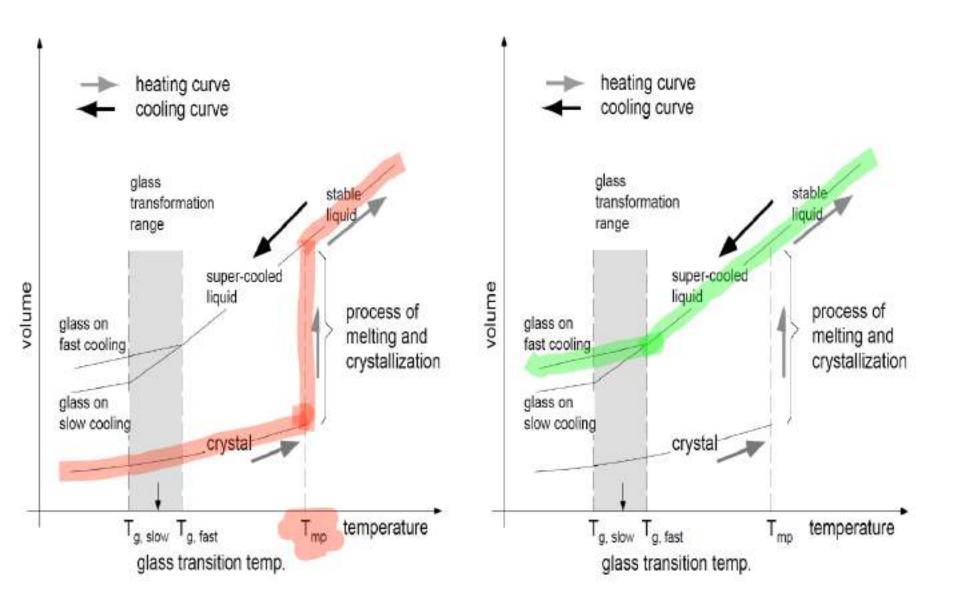
Glasses:


- do not crystallize
- change in slope in spec. vol. curve at glass transition temperature, Tg
 - -- transparent
- no crystals to scatter light

Glass transition temperature (T_q)

• Unlike solidified metal, a glass liquid does not crystallize but follow an **AD** path.

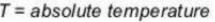


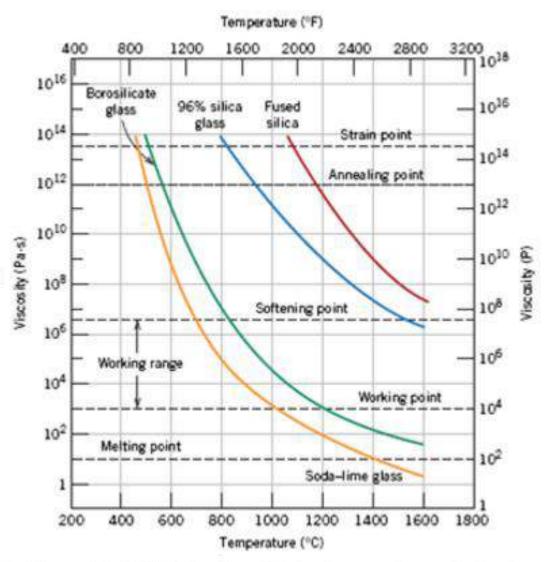

• The faster cooling rate, the higher values of T_{q} .

Solidification of crystalline and amorphous materials showing a change in specific volume

Viscous deformation of glasses

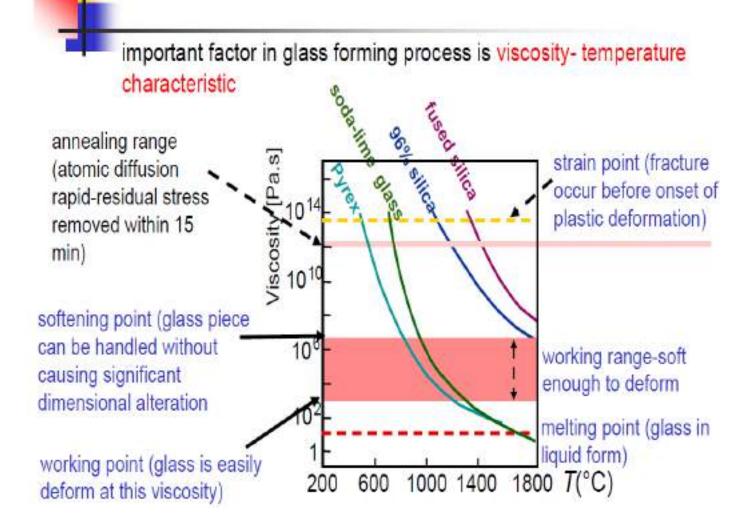
• Glass remains its viscous (supercooled) liquid above *T_a*.


Viscous above T_g and viscosity decreases with increase in temperature.


$$\eta = \eta_o e^{+Q/RT}$$

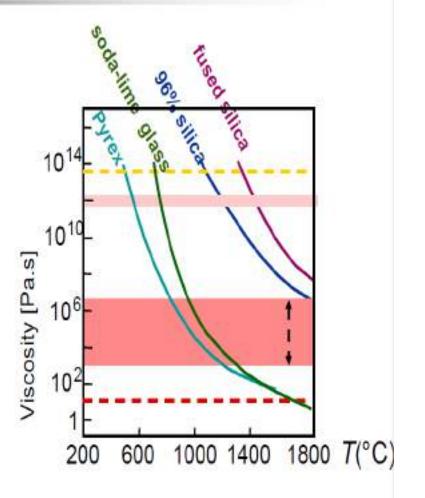
- η = viscosity of the glass
- $\eta_o = pre-exponential constant$
- Q = molar activation energy for viscous flow

R = gas constant



- 1. Working point: 10³ PaS glass fabrication can be carried out
- 2. Softening point: 10⁷ PaS glass flows under its own weight.
- Annealing point: 10¹² PaS Internal stresses can be relieved..
- 4. Strain point: 10^{13.5} PaS glass is rigid below this point.

Glass Properties: Viscosity vs. T and Impurities


Viscosity decreases with T

Glass Viscosity vs. T and Impurities

- soda-lime glass: 70% SiO₂ balance Na₂O (soda) & CaO (lime)
- borosilicate (Pyrex): 13% B₂O₃, 3.5% Na₂O, 2.5% Al₂O₃
- Vycor: 96% SiO₂, 4% B₂O₃
- fused silica: > 99.5 wt% SiO₂

Impurities lower T deform

working point: ($\eta \approx 10^5$ poise) temperature above which it is possible to *form* the glass, *i.e.*, press, draw, shape

softening point: ($\eta \approx 10^8$ poise) temperature above which glass *flows under its own weight*

annealing point: ($\eta \approx 10^{13}$ poise) temperature above which *residual stresses can be relieved within 15 min*

strain point: ($\eta \approx 10^{15}$ poise) temperature below which glass can be *rapidly cooled* without introducing internal stresses capable of fracture

1 Pa s = 10 poise; $\eta_{water} \approx 10^{-2}$ poise

Five common types of glass:

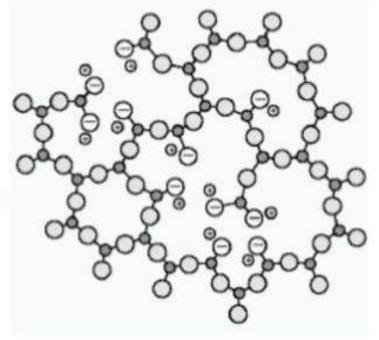
i) Soda-lime glasses

ii) Lead glasses

iii) Borosilicate or Heat-resistant glasses

iv) High-purity Silica glasses

v) Speciality glasses TABLE 14-6 Compositions of typical glasses (in weight percent)

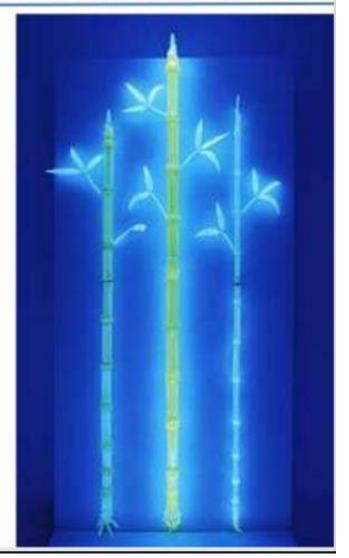

	Glass	SiO ₂	Al ₂ 0 ₃	CaO	Na ₂ 0	B ₂ O ₃	MgO	PbO	Others
2	Fused silica	99							
	Vycor TM	96				-4			
	Pyrex TM	96 81	2		4	12			
	Glass jars	74	1	5	15		4		
	Window glass	74 72	1	10	14		2		
	Plate glass/Float glass	73	1	13	13				
	Light bulbs	74	1	5	16		- 4		
	Fibers	54	14	16		10	- 4		
	Thermometer		6		10	10			
	Lead glass	67			6			17	10% K ₂ O
	Optical flint	73 67 50			1			19	13% BaO, 8% K2O, ZnO
	Optical crown	70			8		10		2% BaO, 8% K ₂ O
	E-glass fibers	55	15	20		10	000		
	S-glass fibers	65	25	2.9		2.0	10		

i) Soda-Lime-Silica Glasses

- 65% sand; 15% soda; 10% lime
- In this glass component are:
 - ✓ 71 73% SiO₂
 - ✓ 12 14% Na₂O
 - ✓ 10 12% CaO
- Adding sodium oxide (soda) lowers melting point
- Adding calcium oxide (lime) makes it insoluble
- Sodium and calcium ions terminate the network and soften the glass
- The Na₂O & CaO decrease the softening point of this glass from 1600°C to 730°C, So that soda lime glass is easier to form.
- An addition of 1 4% MgO is added to Soda lime glass to prevent cracks.
- In addition of 0.5 1.5% Al₂O₃ is used to Increase the durability
- Soda-lime-silica glass is most commonly produced glass which accounts for ~95% of all the glass produced in the world.
- Soda-lime-silica glass expands much when heated
 - Breaks easily during heating or cooling

Uses

- Soda lime glass is used for flat glass, containers, lightening products.
- It is used where chemical durability and heat resistant are not needed



ii) Lead Glasses

- Lime and soda replaced with lead oxide (PbO)
- Contains lead oxide (PbO) to improve refractive index
- High refractive index- clarity sparkle
- Softer –cut and engrave
- Good electrical resistance electronics

iii) Heat-resistant (or Borosilicate) Glasses

- Contains Boron oxide, known as Pyrex.
- Boron-oxide-silica glass expands less
 - Tolerates heating or cooling reasonably well
- Pyrex and Kimax are borosilicate glasses
- Boron oxide replaces lime and most of soda – low thermal expansion coefficient
- Al₂O₃ B₂O₃ aluminosilicate glass with even better heat resistance

iv) High-purity Silica Glasses

- Highest quality most durable
- 3 processes melting pure SiO₂; making 96% silica and flame hydrolysis
- Pure SiO₂ pure silica melted @ 1900 °C under vacuum
- 96% Vycor process borosilicate glass heated to grow crystalline sodium borate channels – extracted hot HNO₃ – leaving 96% pure silica after heat reduction @ 1200 °C
- flame hydrolysis SiCl₄ in CH₄ / O flame (1500°C, produces high-surface silica soot thermally sintered to pure silica at 1723 °C)

 $2H_2O + SiCl_4 \xrightarrow{Flame} SiO_2 + 4HCl$

v) Specialty Glasses

- Coloured glass:
 - > MnO₂ violet,
 - ≻CoO blue,
 - ➤ Cr₂O₃ green

• Opal glass:

- white opaque or translucent glassware
- Colour due to scattering of light from small particle
- ➤usually NaF/CaF crystals
- Inucleating after a cooling and reheating process

Frosted glass:

satiny look when exposed to HF

$$4HF + SiO_2 \rightarrow SiF_4 \uparrow + 2H_2O$$

v) Speciality (Cont.)

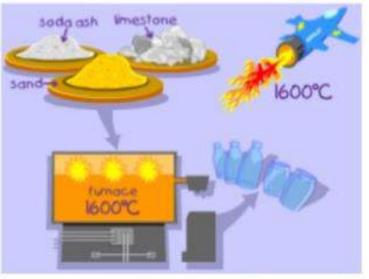
Coated glass:

- ✓ unique properties
- ✓ metal / metal oxides Ag+ + RA \rightarrow Ag↓ mirror
- ✓ electrically conducting with SnO₂ coating (thermal SnCl₄ hydrolysis)

Photosensitive glass:-

- ✓ glass that changes colour upon exposure to light
- ✓ Phototropic:
 - darkens upon exposure to light and returns to original clear sate afterwards.
 - AgCl/AgBr

 $Ag^{+}X^{-} \underset{dark}{\longleftrightarrow} Ag + X$


 Non-silicate glasses are becoming increasingly important for special optical purposes,

✓ for example in the use of glasses prepared from CaF₂, AlF₃ and P₂O₅ for infrared optics or the use of fluoride glasses for optical fibres

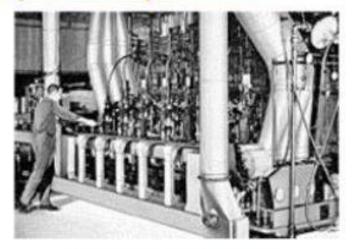
Glass composition										
• Silica glass	Туре	SiO ₂	Na ₂ O	K ₂ O	CaO	MgO	B ₂ O ₃	Al ₂ O ₃	Other	Properties or uses
No radiation damage	Soda-lime	72	14		9	4		1		Window glass
• Soda-lime glass Reduced T _m ~ 730 °C	Silica glass (fused quartz)	99.5+								High-temperature applications; low coefficient of ex-
Borosilicate glass										pansion
(Pyrex glass) Low thermal expansion	96% silica glass	96.3	<0.2	<0.2			2.9	0.4		Comparable to fused quartz
• Lead glass	Borosilicate	80.5	3.8	0.5			12.9	2.2		Resistant to heat and to chemicals
Shielding from high										
energy radiation	Light flint optical	54	1	8					37PbO	High index of refraction
	Surface- strengthened glass	55	16	2	2		2	19	4TiO ₂	Cookware
	Glass-ceramic	56				15		20	9TiO ₂	Radomes

Glass Manufacturing Process

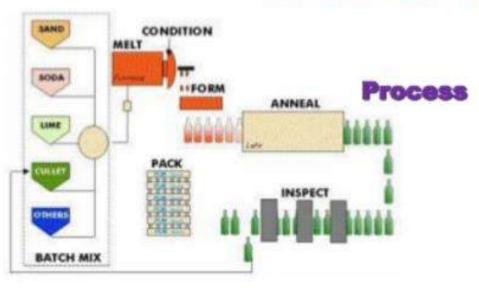
- Silica sand, limestone, soda ash and cullet (recycled glass or broken glass) are keep dry and cool in a batcher house in silos or compartments
- 2. Mixing and weighting into proper proportion:
 - Sand (SiO₂), Quartz, or Silica sand 72%
 - ✓ Flux → to lower T e.g. Soda or Soda Ash (NaHCO₃) 17%; (1700 – 900°C)
 - ✓ Stabilizing agent → to mitigate water solubility of the glass formed – e.g. CaO normally added as Limestone {Lime 5%}

www.glassforever.co.uk/howisglassmade/

Why So Much SiO₂ in Glass?

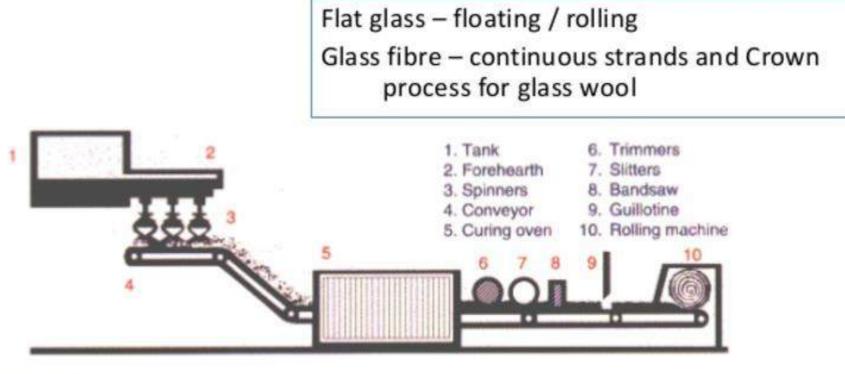

- Because SiO₂ is the best glass former :
 - Silica is the main component in glass products, usually comprising 50% to 75% of total chemistry.
 - It naturally transforms into a glassy state upon cooling from the liquid, whereas most ceramics crystallize upon solidification.

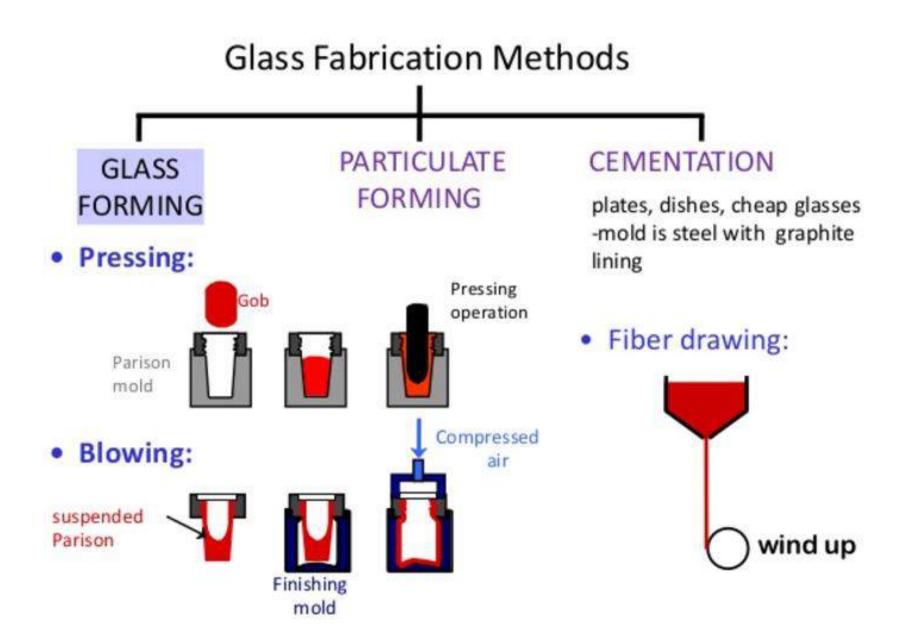
Other Ingredients in Glass

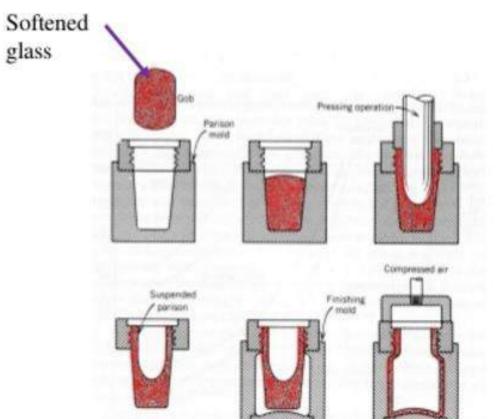

- Sodium oxide (Na₂O), calcium oxide (CaO), aluminum oxide (Al₂O₃), magnesium oxide (MgO), potassium oxide (K₂O), lead oxide (PbO), and boron oxide (B₂O₃)
- Functions:
 - ✓ Act as flux (promoting fusion) during heating
 - ✓ Increase fluidity in molten glass for processing
 - ✓ Improve chemical resistance against attack by acids, basic substances, or water
 - ✓ Add color to the glass
 - ✓ Alter index of refraction for optical applications

Glass Manufacturing Process (Cont.

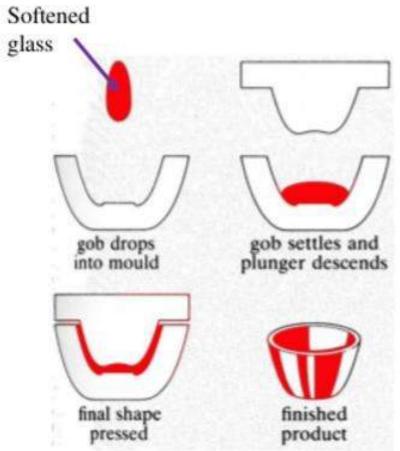
- 3. Send to furnaces in hoppers:
 - operated by natural gas
 - heat the mixture at 1300-1600°C into soften or molten state
- 4. *Molding* (or *Casting*): molten glass flows to forming machine to mold into desire shapes
- 5. Annealing lehrs : reheating the glass in an oven
 - to ensure even cooling of glass for strengthening of the products
- 6. Cooling process: Cool for 30 min to an hour for safe to handle.
- Glass products are then decorated, inspected again and finally packaged and shipped to our customers.



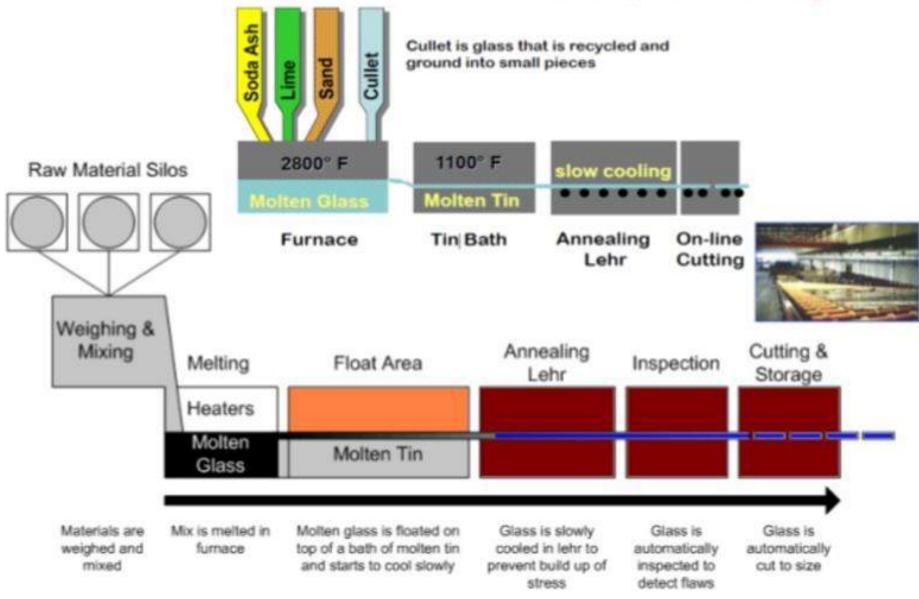

Glass Furnace Cooling Systems



- 1) Casting : molding
- 2) Pressing: pressing second mold into molten glass
- 3) Core-forming: clay core dipped into molten mass
- 4) Fusing : fusing glass rods together around a mold
- 5) Blowing: blowing air into a glob

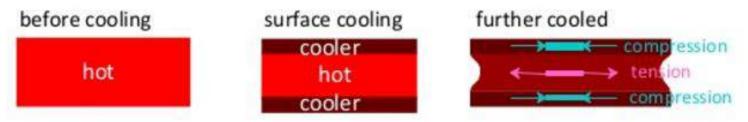


Blow Molding

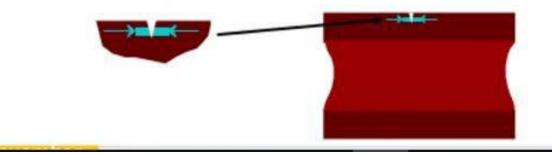


Pressed Glass Processing

Modern Plate/Sheet Glass making:


Heat Treating Glass

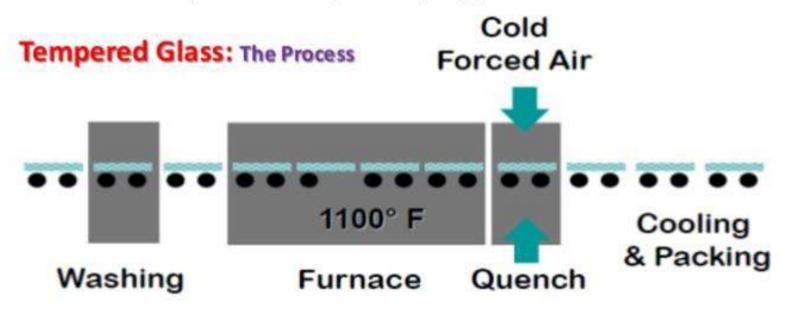
Annealing:


✓ removes internal stress caused by uneven cooling.

Tempering:

- ✓ puts surface of glass part into compression
- ✓ suppresses growth of cracks from surface scratches.
- ✓ sequence:

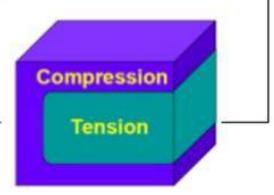
Result: surface crack growth is suppressed.


a) Annealing Glass

- Annealing is a process of slowly cooling glass to relieve internal stresses after it was formed.
- The process may be carried out in a temperature-controlled kiln known as a Lehr.
- Annealing glass is critical to its durability.
- Removes internal stress caused by uneven cooling.
- Glass which has not been annealed is liable to crack or shatter when subjected to a relatively small temperature change or mechanical shock.
- If glass is not annealed, it will retain many of the thermal stresses caused by quenching and significantly decrease the overall strength of the glass.

E. Gro since

b) Tempered Glass


- The tempering process consists of the following steps:
 - 1) First the glass is washed and then heated.
 - 2) In order to temper glass, it must reach 1100°F (the softening point for glass.)
 - The glass is then cooled with cold air. Quenching with forced cold air sets up the tension and compression zones.
 - 4) The tempered glass continues down the rollers to cool more and be packed for shipping. Glass to be tempered must be cut to size before the tempering step.
- A flow chart in the next slide provides a summary of the tempering process.

b) Tempered Glass (Cont.)

- Tempering glass:
 - ✓ Heat glass to softening point
 - ✓ Cool outside of glass quickly
 - Outside stiffens while inside is still hot
 - Shrinking inside compresses outside
 - Compressed outside stretches inside
- Resists fractures because surface is compressed
- Crumbles when cracked because inside is tense

- Glass expands when heated
- Quenching "freezes" this expansion on the outside
- Center cools more slowly, and contracts. Sets up tension and compression zones.
- Tempered Glass is required for door products and some windows installed near doors. If tempering is done improperly then distortion can result.
- Tempered glass is stronger than annealed glass.
 If annealed glass (raw float) has a strength factor of "1", tempered glass would be "4".

Annealed (regular) Glass	Tempered Glass
 Advantages: ✓ Cost Limitations: ✓ Breaks in sharp pieces ✓ Not as strong as Tempered Glass ✓ Size limitations 	 Advantages: ✓ 4 times the stronger than annealed ✓ Breaks into small, harmless pieces. ✓ Qualifies as Safety Glazing Limitations: ✓ Must be cut to size before tempering ✓ Optical distortion (roller wave, strain pattern)

What is the difference between (regular) annealed glass and tempered glass?

Examples of today's glass products:

- Containers (jars and bottles)
- Flat glass (windows, vehicle glazing, mirrors, etc.)
- Lighting glass (fluorescent tubes, light bulbs, etc.)
- Tableware (drinking glasses, bowls, lead crystal, etc.)

- Laboratory equipments (test tubes, cylinders, measuring flasks, etc.)
- TV tubes and screens
- Decorative glass
- Fiberglass
- Optical glass
- Vacuum flasks

Class Assignment

- 1. Cite the two common characteristic of glasses.
- 2. What happen when molten SiO₂ cooled to form glass?
- 3. Why glass behave as brittle at room temperature ? What happen to the glass at high temperature?
- 4. Differentiate between anneal and tempering glass.

2 common characteristics glasses :

- 1) Do not have long range order (LRO) (short range atomic order –brittle)
 - no regularity in the arrangements of its molecular
- 2) Exhibit a time-dependant behaviour known as glass transition phenomenon
 - occurs over temperature range called the glass transition temperature.
 - as inorganic melt cooled to solid without recrystallization (amorphous solid)

"glass can be defined as an amorphous solid completely lacking in long range, periodic atomic structure and exhibiting a region of glass transformation behaviour ".