
CHAPTER 4

THE STRUCTURE OF CRYSTALLINE SOLIDS

METALLIC CRYSTAL STRUCTURES

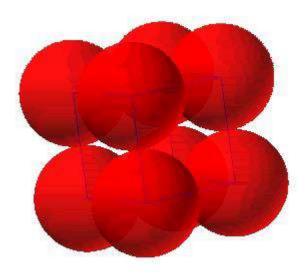
How can we stack metal atoms to minimize empty space?

2-dimensions

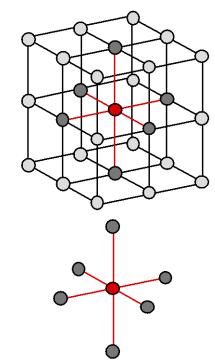
Now stack these 2-D layers to make 3-D structures

METALLIC CRYSTAL STRUCTURES

- Tend to be densely packed.
- Reasons for dense packing:
 - Typically, only one element is present, so all atomic radii are the same.
 - Metallic bonding is not directional (Strength of bond is equal in all directions).
 - Nearest neighbor distances tend to be small in order to lower bond energy.
 - Electron cloud shields cores from each other
- Have the simplest crystal structures.

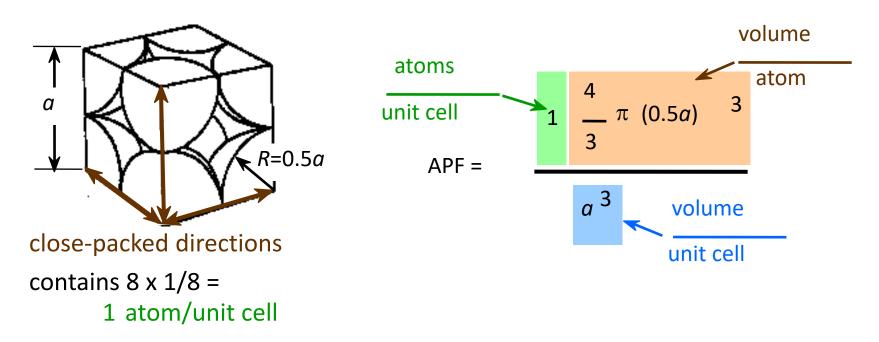

We will examine three such structures...

• Two important characteristics of a metal crystal structure


- coordination number : number of nearest neighbour or touching atoms
- atomic packing factor (APF) : sum of the sphere volumes of all atoms within a unit cell

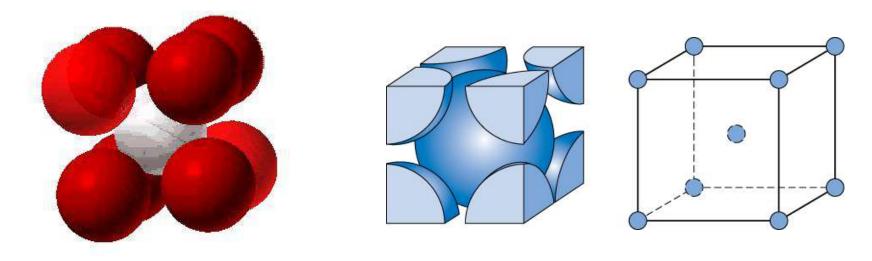
SIMPLE CUBIC STRUCTURE (SC)


• Rare due to low packing density (only Po (polonium) has this structure)


 Coordination # = 6 (# nearest neighbors)

ATOMIC PACKING FACTOR (APF)

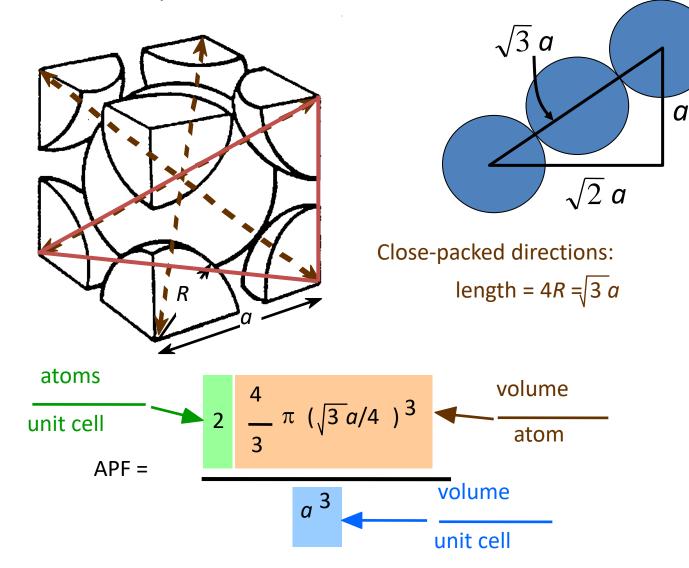
• APF for a simple cubic structure = 0.52



BODY CENTERED CUBIC STRUCTURE (BCC)

- Atoms touch each other along cube diagonals.
 - --Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.

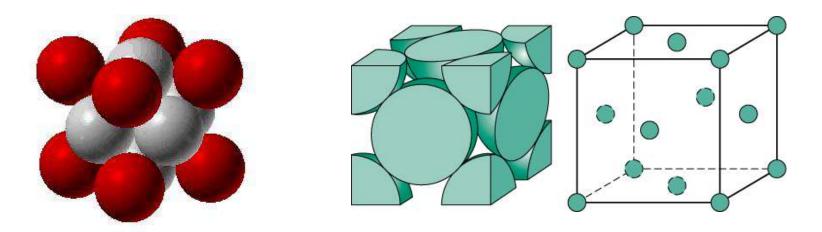
ex: Cr, W, Fe (α), Tantalum, Molybdenum


• Coordination # = 8

2 atoms/unit cell: 1 center + 8 corners x 1/8

ATOMIC PACKING FACTOR (APF) - BCC

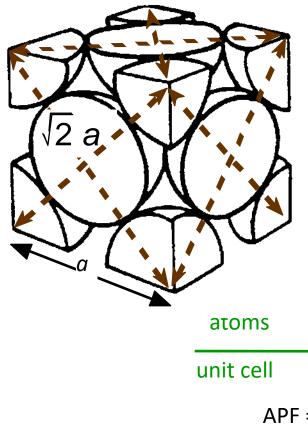
• APF for a body-centered cubic structure = 0.68



FACE CENTERED CUBIC STRUCTURE (FCC)

- Atoms touch each other along face diagonals.
 - --Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.

ex: Al, Cu, Au, Pb, Ni, Pt, Ag

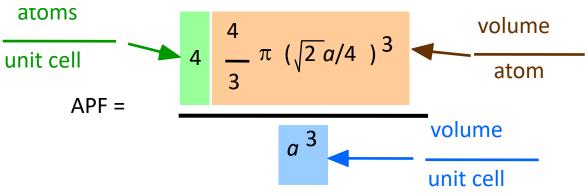

• Coordination # = 12

4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8

ATOMIC PACKING FACTOR (APF)- FCC

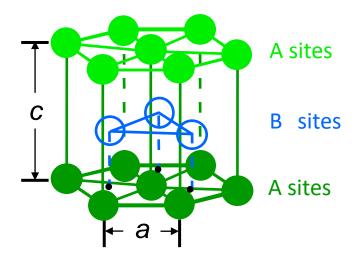
• APF for a face-centered cubic structure = 0.74

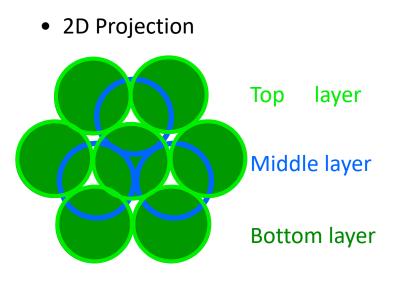
maximum achievable APF


Close-packed directions:

length =
$$4R = \sqrt{2} a$$

Unit cell contains:


6 x 1/2 + 8 x 1/8


= 4 atoms/unit cell

HEXAGONAL CLOSE-PACKED STRUCTURE (HCP)

- ABAB... Stacking Sequence
- 3D Projection

- Coordination # = 12
- APF = 0.74
- *c/a* = 1.633

6 atoms/unit cell ex: Cd, Mg, Ti, Zn

Summary

	a (lattice constant)	Atoms/unit cell	Coordi- nation No.	Examples
Simple cubic	a = 2R	1	6	CsCl
BCC	a = 4R/\/3	2	8	Many metals: α-Fe, Cr, Mo, W
FCC	a = $4R/\sqrt{2}$ or a = $2R\sqrt{2}$	4	12	Many metals : Ag, Au, Cu, Pt
HCP	a = 2R c = 1.633 a	6	12	Many metals : Co, Mg, Ti, Zn

EXAMPLE PROBLEM

- Consider a BCC crystal structure. Given that length of the cube side is *a*, and the atomic radius is *R*.
 Calculate the atomic packing factor (APF) of BCC unit cell.
- 2. Show that the atomic packing factor for FCC crystal structure is 0.74.

Crystal structure for some metals

Metal	Crystal Structure ^a	Atomic Radias* (a.m)	Metal	Crystal Structure	Atomic Radias (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FOC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCF	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (a)	HCP	0.1445
fron (a)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.3750	Zinc	HCP	0.1332

THEORETICAL DENSITY, ρ

Density = ρ =

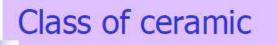
Mass of Atoms in Unit Cell Total Volume of Unit Cell

 $\rho = \frac{nA}{V_C N_A}$

where n = number of atoms/unit cell A = atomic weight $V_c =$ Volume of unit cell = a^3 for cubic $N_A =$ Avogadro's number = 6.022 x 10²³ atoms/mol

EXAMPLE PROBLEM

Copper has an atomic radius of 0.128 nm, an FCC crystal structure and an atomic weight of 63.5 g/mol. Compute its theoretical density.


CERAMIC CRYSTAL STRUCTURE

Ceramic Materials

- keramikos burnt stuff in Greek → desirable properties of ceramics are normally achieved through a high-temperature heat treatment process (*firing*).
- Usually a compound between metallic and non-metallic elements.
- Always composed of more than one element (e.g.,Al₂O₃, NaCl, SiC, SiO₂)
- Interaction bond either totally ionic or having some covalent character

Properties :

- Generally hard and brittle
- Generally electrical and thermal insulators (exceptions: graphite,
- diamond, AIN... and others)
- Can be optically opaque, semi-transparent, or transparent
- High chemical stability and high melting temperature.

Traditional Ceramics: primary raw materials is clay Example: porcelain, bricks, tiles, glasses.

20

Class of ceramic

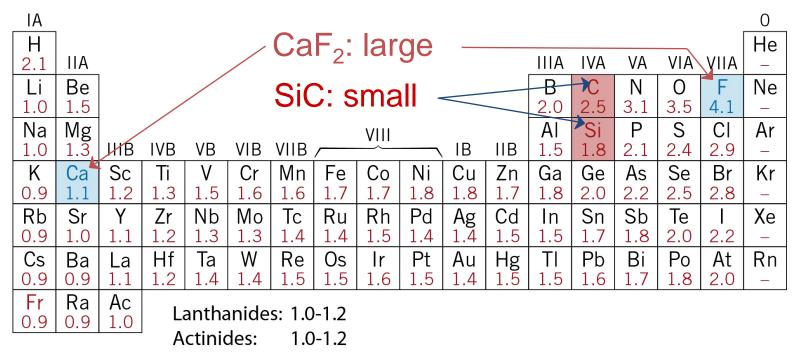
Now new generation of this materials have evolved

Engineering Ceramics

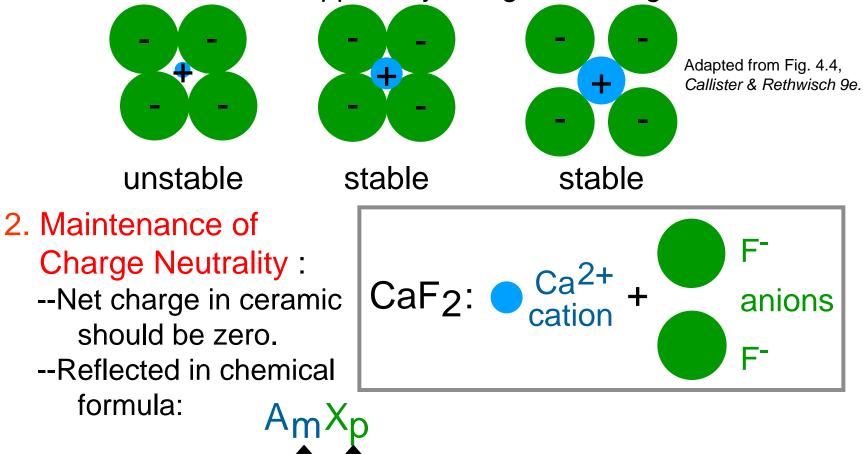
- High-temperature ceramic
- Advance ceramic
 - Electroceramic

Aerospace product-Ni Ti, Stainless steel

Oxygen sensor



21

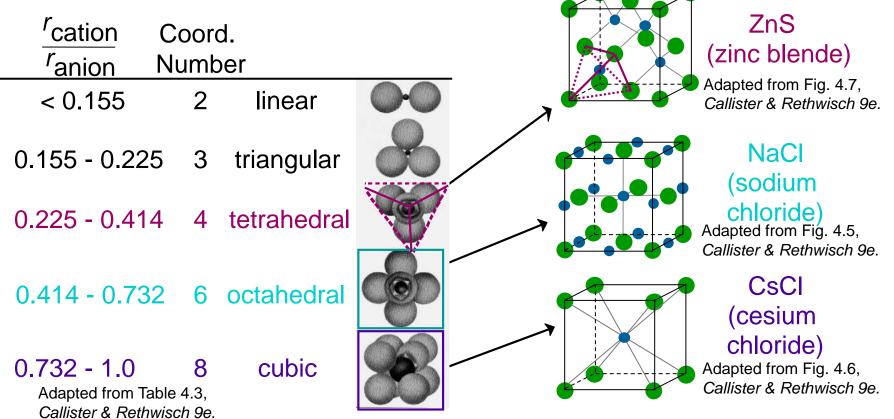

Atomic Bonding in Ceramics

- Bonding:
 - -- Can be ionic and/or covalent in character.
 - -- % ionic character increases with difference in electronegativity of atoms.
- Degree of ionic character may be large or small:

Factors that Determine Crystal Structure

 Relative sizes of ions – Formation of stable structures: --maximize the # of oppositely charged ion neighbors.

m, p values to achieve charge neutrality


Coordination Number and Ionic Radii

^rcation

^ranion

Coordination Number increases with

To form a stable structure, how many anions can surround around a cation?

Computation of Minimum Cation-Anion Radius Ratio

• Determine minimum $r_{\text{cation}}/r_{\text{anion}}$ for an octahedral site (C.N. = 6)

$$2r_{anion} + 2r_{cation} = \sqrt{2}a$$

$$a = 2r_{anion}$$

$$2r_{anion} + 2r_{cation} = 2\sqrt{2}r_{anion}$$

$$r_{anion} + r_{cation} = \sqrt{2}r_{anion}$$

$$r_{cation} = (\sqrt{2} - 1)r_{anion}$$

$$\frac{r_{cation}}{r_{anion}} = \sqrt{2} - 1 = 0.414$$

Example Problem: Predicting the Crystal Structure of FeO

• On the basis of ionic radii, what crystal structure would you predict for FeO?

Cation	Ionic radius (nm)
AI ³⁺	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100

Anion

02-	0.140
CI-	0.181
F ⁻	0.133

• Answer: $\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$ = 0.550

> based on this ratio, -- coord # = 6 because

0.414 < 0.550 < 0.732

-- crystal structure is NaCl

Data from Table 4.4, *Callister & Rethwisch 9e.*

Example Problem: Predicting the Crystal Structure of FeO

• On the basis of ionic radii, what is the coordination number and coordination geometry would you predict for FeO?

Cation	Ionic radius (nm)
AI ³⁺	0.053
Fe ²⁺	0.077
Fe ³⁺	0.069
Ca ²⁺	0.100
Anion	
02-	0.140
CI-	0.181
F ⁻	0.133

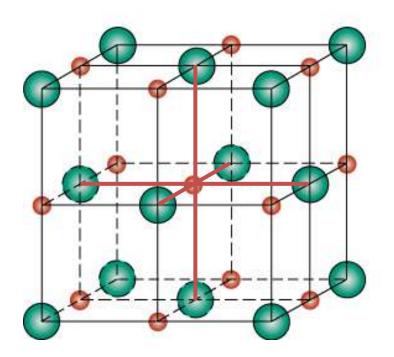
Data from Table 4.4, Callister & Rethwisch 9e.

• Answer:

 $\frac{r_{\text{cation}}}{r_{\text{anion}}} = \frac{0.077}{0.140}$ = 0.550

based on this ratio,

- -- coord # = 6 because
 - 0.414 < 0.550 < 0.732
- -- Coordination geometry is octahedral


Ceramic Crystal Structure

1. AX - Type Crystal Structures Include: NaCI, CsCI, and zinc blende structures

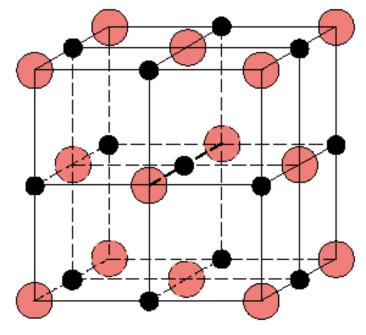
3. A_mB_nX_p Crystal Structures

AX Crystal Structures

1. NaCl (rock salt) structure

○ Na⁺ $r_{Na} = 0.102 \text{ nm}$ ○ Cl⁻ $r_{Cl} = 0.181 \text{ nm}$

 $r_{\rm Na}/r_{\rm Cl} = 0.564$


.:. cations (Na⁺) prefer octahedral sites

Adapted from Fig. 4.5, *Callister & Rethwisch 9e.*

MgO and FeO

 $r_{\rm Mg}/r_{\rm O}$

MgO and FeO also have the NaCl structure

•
$$O^{2-}$$
 $r_{O} = 0.140 \text{ nm}$
• Mg^{2+} $r_{Mg} = 0.072 \text{ nm}$
= 0.514

: cations prefer octahedral sites

Adapted from Fig. 4.5, *Callister & Rethwisch 9e.*

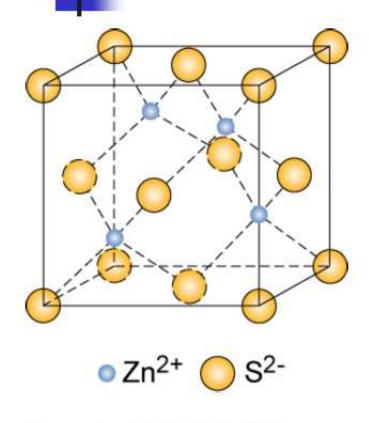
So each Mg²⁺ (or Fe²⁺) has 6 neighbor oxygen atoms

AX Crystal Structures

Cs+

2. Cesium Chloride structure

 $\frac{r_{\rm CS^+}}{r_{\rm CI^-}} = \frac{0.170}{0.181} = 0.939$


∴ Since 0.732 < 0.939 < 1.0, cubic sites preferred

So each Cs⁺ has 8 neighbor Cl⁻

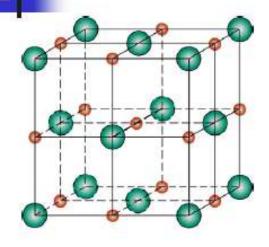
Fig. 4.6, Callister & Rethwisch 9e.

AX-type Crystal structure

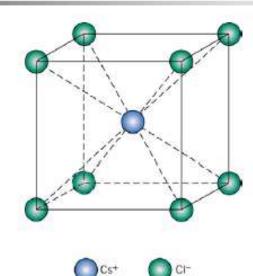
Zinc Blende structure (s atom at corner and face position, Zn fill interior tetrahedral position)

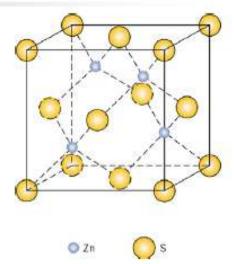
Example: ZnO, ZnS, SiC

$$\frac{r_{\rm Zn^{2+}}}{r_{\rm O^{2-}}} = \frac{0.074}{0.140} = 0.529 \implies \text{octahedron??}$$


- Size arguments predict Zn²⁺ in octahedron sites
- In observed structure Zn²⁺ in tetrahedron sites

Why is Zn²⁺ in *tetrahedron* sites?


bonding hybridization of zinc favors tetrahedron sites


So each Zn²⁺ has 4 neighboring S²⁻

Summary - AX

🔘 CI-

Rock Salts

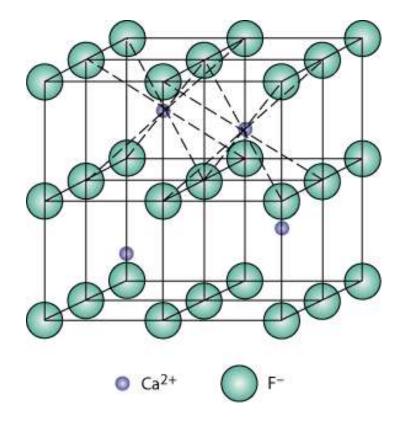
Generated from FCC arrangement

O Na⁺

Ceramics: NaCl, NiO, MgO, FeO

Cesium Chloride

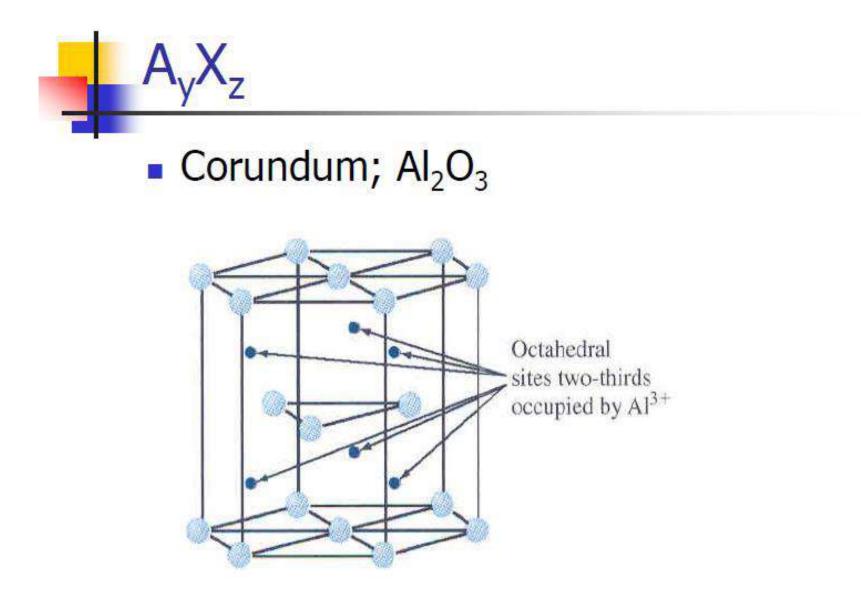
Generated from BCC arrangement


Ceramics: CsCl, TICl and TIBr

Zinc Blende Generated from FCC arrangement

Ceramics: ZnO, CdS, InAs, GaAs, ZnSe, SiC

AX₂ Crystal Structures


Fluorite structure

• Calcium Fluorite (CaF₂)

- Cations in cubic sites
- UO₂, ThO₂, ZrO₂, CeO₂
- Antifluorite structure positions of cations and anions reversed

Fig. 4.8, Callister & Rethwisch 9e.

ABX₃ Crystal Structures

Perovskite structure

Ex: complex oxide BaTiO₃

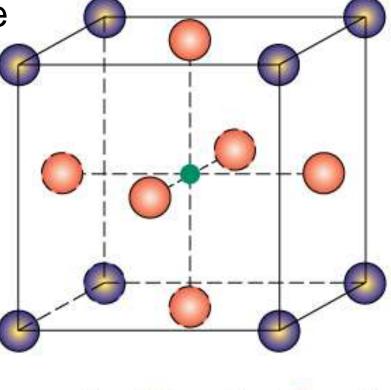
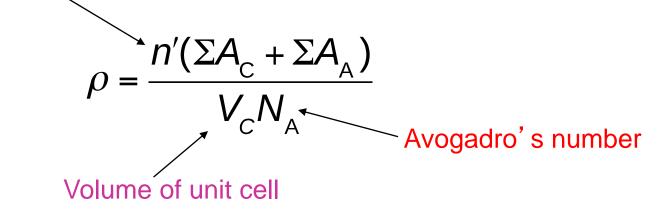
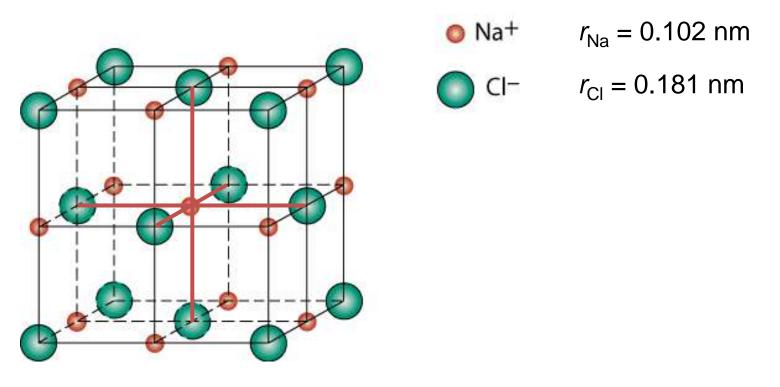



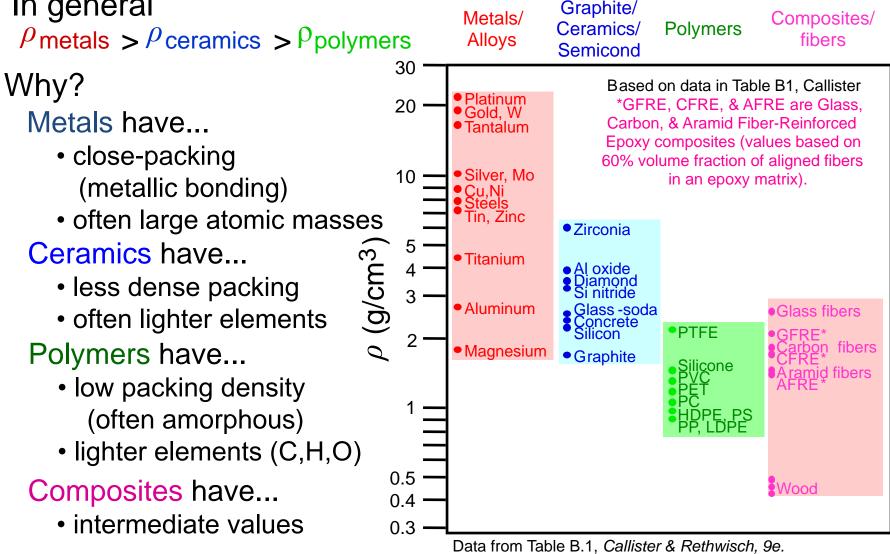
Fig. 4.9, Callister & Rethwisch 9e.

• Ti⁴⁺ 🔘 Ba²⁺ 🔘 O²⁻

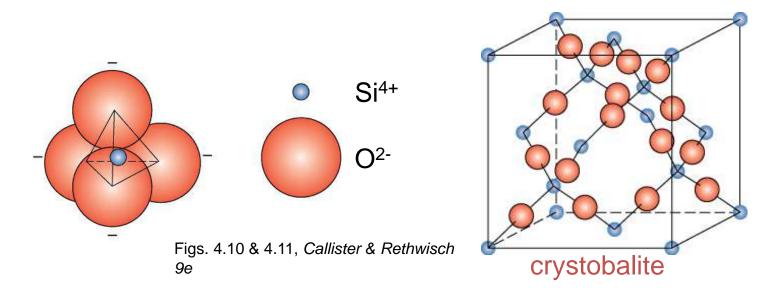
Density Computations for Ceramics


Number of formula units/unit cell

 $\Sigma A_{\rm C}$ = sum of atomic weights of all cations in formula unit $\Sigma A_{\rm A}$ = sum of atomic weights of all anions in formula unit

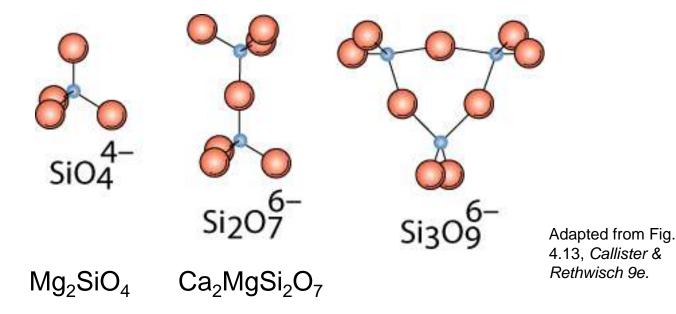

Density Computations for Ceramics - Example

On the basis of the crystal structure, compute the theoretical density for sodium chloride. ($A_{Na} = 23$ g/mol; $A_{CI} = 35.5$ g/mol)


Adapted from Fig. 4.5, *Callister & Rethwisch 9e.*

Densities of Material Classes

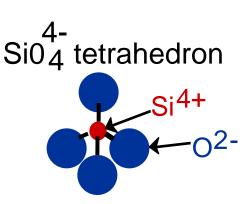
Silicate Ceramics – Crystalline Silica


Most common elements on earth are Si & O

- SiO₂ (silica) polymorphic forms are quartz, crystobalite, & tridymite
- The strong Si-O bonds lead to a high melting temperature (1710°C) for this material

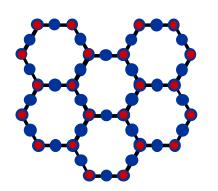
Silicates

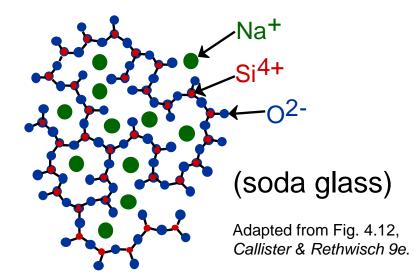
Bonding of adjacent SiO₄⁴⁻ accomplished by the sharing of common corners, edges, or faces



Presence of cations such as Ca²⁺, Mg²⁺, & Al³⁺

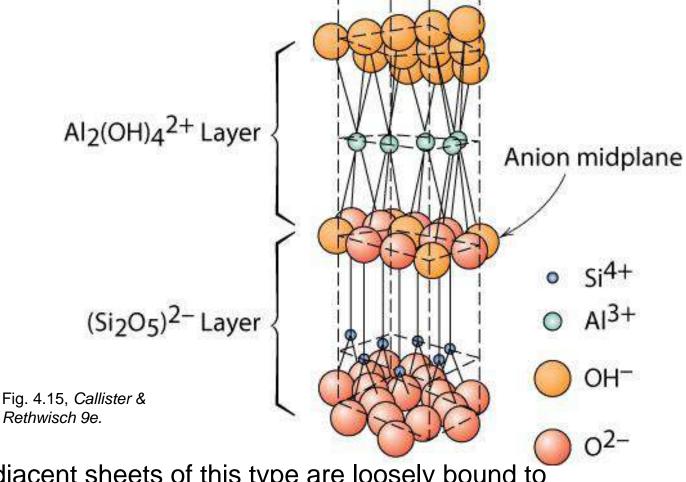
- 1. maintain charge neutrality, and
- 2. ionically bond SiO_4^{4-} to one another


Glass Structure


Basic Unit:

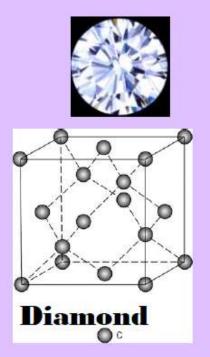
Glass is noncrystalline (amorphous)

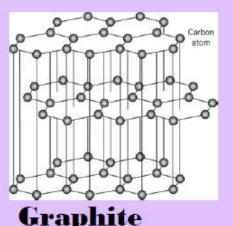
- Fused silica is SiO₂ to which no impurities have been added
- Other common glasses contain impurity ions such as Na⁺, Ca²⁺, Al³⁺, and B³⁺
- Quartz is crystalline SiO₂:

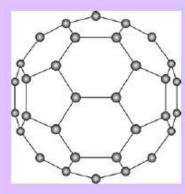

Layered Silicates

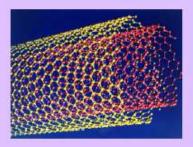
- Layered silicates (e.g., clays, mica, talc)
 - SiO₄ tetrahedra connected together to form 2-D plane
- A net negative charge is associated with each (Si₂O₅)²⁻ unit
- Negative charge balanced by adjacent plane rich in positively charged cations

Layered Silicates (cont)


 Kaolinite clay alternates (Si₂O₅)²⁻ layer with Al₂(OH)₄²⁺ layer


Note: Adjacent sheets of this type are loosely bound to one another by van der Waal's forces.


Carbon- based materials


- Since graphite is often considered a ceramic material, and since the crystal structure of diamond is related to the zinc blende structure, discussion of carbon- based materials typically accompanies ceramics.
- We will review the crystal structure and major properties of the three known polymorphs of carbon:
- diamond (metastable)
- graphite (stable)
- fullerene (stable)

Carbon Nanotubes

Fullerenes

Polymorphic Forms of Carbon

Diamond

- tetrahedral bonding of carbon
 - hardest material known
 - very high thermal conductivity
- large single crystals gem stones
- small crystals used to grind/cut other materials
- diamond thin films
 - hard surface coatings used for cutting tools, medical devices, etc.

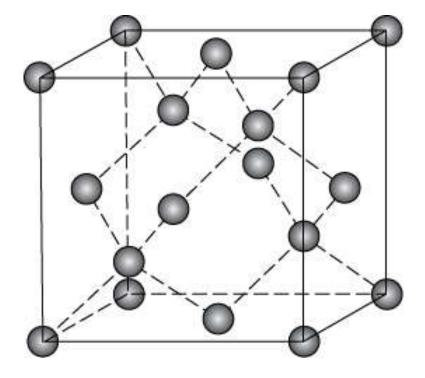
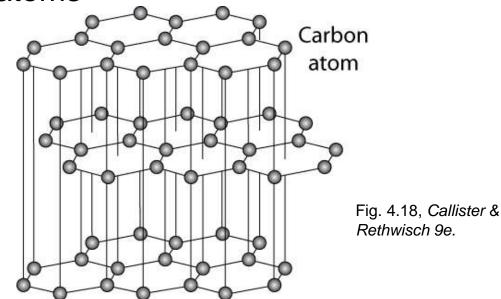
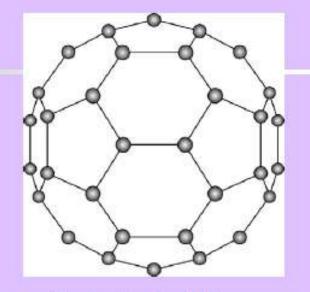



Fig. 4.17, Callister & Rethwisch 9e.

Polymorphic Forms of Carbon (cont)

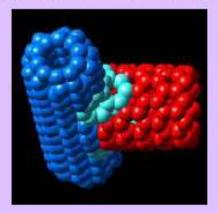
Graphite

 layered structure – parallel hexagonal arrays of carbon atoms

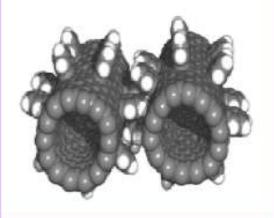

- weak van der Waal's forces between layers
- planes slide easily over one another -- good lubricant

FULLERENE

- discovered in 1985 by spark synthesis
- carbon bond to form a hollow spherical molecule, each consisting of 60 carbon atoms
- commonly called "Buckminsterfullerene" after R. Buckminster Fuller, original designer of the geodesic dome.
- The highly symmetrical nature of the bonding gives rise to a highly stable molecule.
- Individual C60 molecules bond together to form a FCC lattice
- other forms have recently been discovered including tubes and rods (buckytubes)


Possible applications:

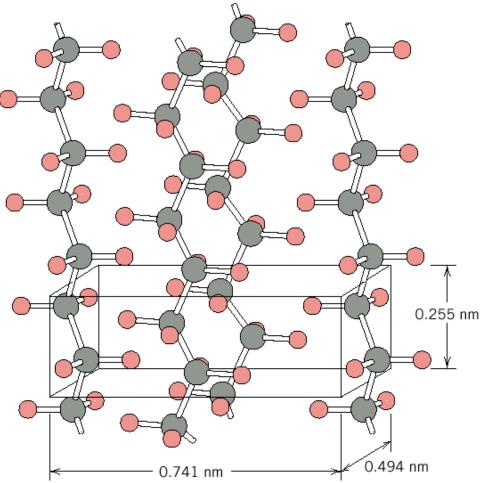
- drug delivery
- low mass structural members


Buckminsterfullerenes (buckyballs) **Carbon Nanotubes** – single graphite atomic layer with conventional hexagonal structure being rolled into tubes and at both ends closed with 2 hemi fullerenes

Carbon Nanotubes carbon nanotubes are expected to play an important role in future *nanotechnology* applications (nanoscale materials, sensors, machines, and computers)

Carbon nanotube T-junction

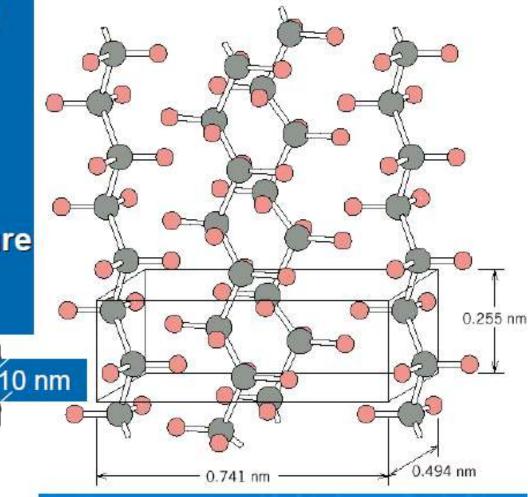
C nanotube as reinforcing fibre in nanocomposite


carbon nanotube gear

Properties: •Have tensile strength 20 times than that of the strongest steel •High elastic modulus •Low density, conduct electricity, high heat conductivity

Crystallinity in Polymers

Fig. 4.19, Callister & Rethwisch 9e.


- Ordered atomic arrangements involving molecular chains
- Crystal structures in terms
 of unit cells
- Example shown
 - polyethylene unit cell

Polymer Crystallinity

Ex: polyethylene unit cell

- Crystals must contain the polymer chains in some way
 - Chain folded structure

Computation of Density and Percent Crystallinity

• Computation of Density

(in relation with number of molecules inside a unit cell)

$$\rho = \frac{nA}{V_C N_{\rm A}}$$

Where:

- n = number of repeat units within a unit cell
- A = repeat unit molecular weight
- V_C = volume of the unit cell
- $N_{\rm A}$ = Avogadro's number (6.023 × 10²³ atoms/mol)

Computation of Density and Percent Crystallinity

• Computation of Percent Crystallinity

% crystallinity =
$$\frac{\rho_c(\rho_s - \rho_a)}{\rho_s(\rho_c - \rho_a)} \times 100$$

Where:

 $\label{eq:rho_s} \begin{array}{l} \mbox{= density of polymer specimen} \\ \rho_a \mbox{= density of totally amorphous polymer} \\ \rho_c \mbox{= density of perfectly crystalline polymer} \end{array}$

Computations of the Density and Percent Crystallinity of Polyethylene

(a) Compute the density of totally crystalline polyethylene. The orthorhombic unit cell for polyethylene is shown in Figure 14.10; also, the equivalent of two ethylene repeat units is contained within each unit cell.

(b) Using the answer to part (a), calculate the percent crystallinity of a branched polyethylene that has a density of 0.925 g/cm^3 . The density for the totally amorphous material is 0.870 g/cm^3 .

Crystals as Building Blocks

- Some engineering applications require single crystals:
 -- turbine blades
 - -- diamond single crystals for abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)

- Properties of crystalline materials often related to crystal structure.
 - -- Ex: Quartz fractures more easily along some crystal planes than others.

(Courtesy P.M. Anderson)

Polycrystals

• Most engineering materials are polycrystals.

Fig. K, color inset pages of *Callister 5e*. (Courtesy of Paul E. Danielson, Teledyne Wah Chang Albany)

Isotropic

Anisotropic

- Nb-Hf-W plate with an electron beam weld.
- Each "grain" is a single crystal.
- If grains are randomly oriented, overall component properties are not directional.
- Grain sizes typically range from 1 nm to 2 cm (i.e., from a few to millions of atomic layers).

59

Single vs Polycrystals

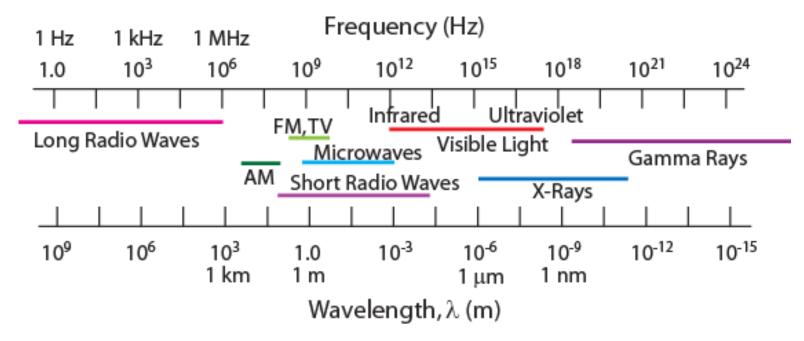
- Single Crystals

 Properties vary with
 direction: anisotropic.
 - -Example: the modulus of elasticity (*E*) in BCC iron:
- Polycrystals
 - Properties may/may not vary with direction.
 If grains are randomly oriented: isotropic.
 (*E*_{poly iron} = 210 GPa)
 If grains are textured, anisotropic.

E (diagonal) = 273 GPa *E* (edge) = 125 GPa 200 µm

Data from Table 3.3, *Callister & Rethwisch 9e.* (Source of data is R.W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Materials*, 3rd ed., John Wiley and Sons, 1989.)

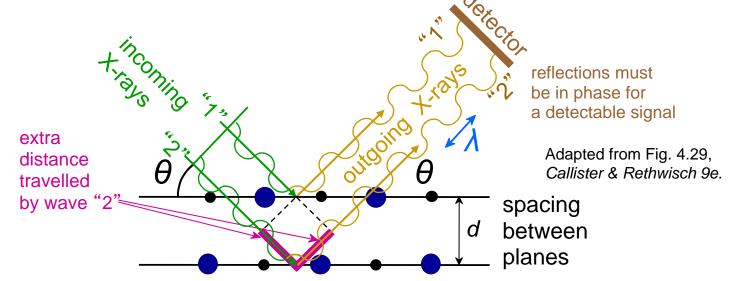
Adapted from Fig. 6.19(b), *Callister & Rethwisch 9e*. [Fig. 6.19(b) is courtesy of L.C. Smith and C. Brady, the National Bureau of Standards, Washington, DC (now the National Institute of Standards and Technology, Gaithersburg, MD).]


Polymorphism

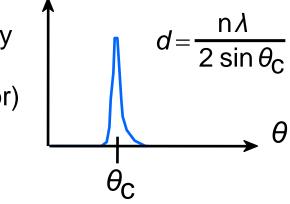
• Two or more distinct crystal structures for the same material (allotropy/polymorphism)

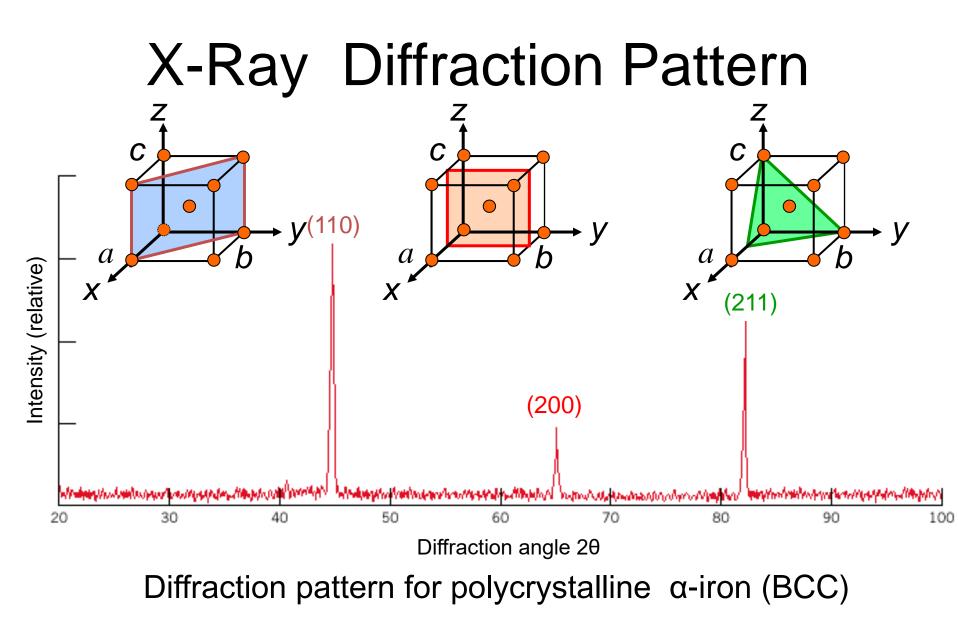
iron system titanium liquid α, β -Ti 1538° BCC carbon S-Fe 1394diamond, graphite **FCC** $\nu - \mathbf{E} \mathbf{e}$ 912[°] C BCC α-Fe

X-Ray Diffraction


Electromagnetic Spectrum

- Diffraction gratings must have spacings comparable to the wavelength of diffracted radiation.
- Can't resolve spacings $< \lambda$
- Spacing is the distance between parallel planes of atoms.


X-Rays to Determine Crystal Structure


Incoming X-rays diffract from crystal planes.

Measurement of critical angle, $(_c, allows computation of planar spacing, d.$

X-ray intensity (from detector)

Adapted from Fig. 3.22, Callister 8e.

Summary

- Common metallic crystal structures are FCC, BCC, and HCP. Coordination number and atomic packing factor are the same for both FCC and HCP crystal structures.
- We can predict the density of a material, provided we know the atomic weight, atomic radius, and crystal geometry (e.g., FCC, BCC, HCP).
- Interatomic bonding in ceramics is ionic and/or covalent.
- Ceramic crystal structures are based on:
 - -- maintaining charge neutrality
 - -- cation-anion radii ratios.
- Some materials can have more than one crystal structure. This is referred to as polymorphism (or allotropy).
- X-ray diffraction is used for crystal structure and interplanar spacing determinations.