CHAPTER 2 ATOMIC STRUCTURE AND INTERATOMIC BONDING

What are ATOMS?

- All matter is made up of tiny particles called atoms.
- Since the atom is too small to be seen even with the most powerful microscopes, scientists rely upon on models to help us to understand the atom.

Even with the world's best microscopes we cannot clearly see the structure or behavior of the atom.

Is this really an ATOM?

Even though we do not know what an atom looks like, scientific models must be based on evidence. Many of the atom models that you have seen may look like the one below which shows the parts and structure of the atom.

Bohr Atomic Model

- Bohr model present early attempt to describe electron in atom
- Electrons are particles moving in discrete orbitals
- Electron energy is quantized into shells

ELECTRON ENERGY STATES Bohr's model vs Wave mechanical's models

Figure 2.2 (a) The first three electron energy states for the Bohr hydrogen atom.
(b) Electron energy states for the first three shells of the wave-mechanical hydrogen atom.

- (Adapted from W. G. Moffatt, G. W.
Pearsall, and J. Wulff,
The Structure and
Properties of
Materials, Vol. I,
Structure, p. 10.
Copyright © 1964 by John Wiley \& Sons, New York. Reprinted by permission of John Wiley \& Sons, Inc.)

Disadvantages of Bohr's Model

1. Electron couldn't circle around the nucleus like a planet - because they would lose energy (by emitting electromagnetic radiation \& spiral to the nucleus)
2. Bohr was not able to explain electron orbits of large atoms with many electrons

What does an ATOM look like?

Atoms are made of a nucleus that contains protons, neutrons and electrons that orbit around the nucleus at different levels, known as shells.

Shell @ Orbital @ Energy level
Figure : A simplified diagram of atom

Atomic Structure

- atom - electrons - $9.11 \times 10^{-31} \mathrm{~kg}$ protons neutrons $\quad\}_{1.672623 / 1.674929 \times 10^{-27} \mathrm{~kg}}$
- atomic number $=\#$ of protons in nucleus of atom = \# of electrons in neutral species
- $\mathrm{A}[=]$ atomic mass unit $=\mathrm{amu}=1 / 12$ mass of ${ }^{12} \mathrm{C}$
- $1 \mathrm{amu}=1.660540 \times 10^{-27} \mathrm{~kg}$

Atomic wt $=w t$ of 6.022×10^{23} molecules or atoms
$1 \mathrm{amu} /$ atom $=1 \mathrm{~g} / \mathrm{mol}$
C 12.011
H 1.008 etc.
-These particles have the following properties:

Particle	Charge	Location	Mass (amu)	Symbol
Proton	Positive (+ve)	Nucleus	1.0073	
Neutron	Neutral	Nucleus	1.0087	
Electron	Negative (-ve)	Orbital	0.000549	

-To describe the mass of atom, a unit of mass called the atomic mass unit (amu) is used.
-The number of protons, neutrons and electrons in an atom completely determine its properties and identity. This is what makes one atom different from another.

Why are all ATOMS are ELECTRICALLY NEUTRAL?

Most atoms are electrically neutral, meaning that they have an equal number of protons and electrons. The positive and negative charges cancel each other out. Therefore, the atom is said to be electrically neutral.

If an atom gains or loses electrons, the atom is no longer neutral and it become electrically charged. The atom is then called an ION.

cation - ion with a positive charge

- If a neutral atom loses one or more electrons, it becomes a cation.

Cations are smaller than their "parent atom" because there is less e-e repulsion
anion - ion with a negative charge

- If a neutral atom gains one or more electrons, it becomes an anion.

Anions are larger than their "parent atom" because there is more e-- e repulsion

ATOMIC NUMBER and ATOMIC MASS

Atom can be described using :

1) ATOMIC NUMBER

2) ATOMIC MASS

The element helium has the atomic number 2 , is represented by the symbol He , its atomic mass is 4 and its name is helium.

ATOMIC NUMBER tells how many PROTONS (Z) are in its atoms which determine the atom's identity.

The list of elements (ranked according to an increasing no. of protons) can be looked up on the Periodic Table. So, if an atom has 2 protons (atomic no. = 2), it must be helium(He).

ATOMIC MASS tells the sum of the masses of PROTONS (Z) and NEUTRONS (N). within the nucleus E.g :

lithium:
Atomic number $=3$
3 protons, Z
4 neutrons, N
Atomic mass, $A=3+4=7$

BUT... although each element has a defined number of protons, the number of neutrons is not fixed isotopes

ISOTOPES

- Atoms which have the same number of protons but different numbers of neutrons.

- Atoms which have the same atomic number but different atomic mass.
- Eg : Hydrogen has 3 isotopes.

Natural Isotope	Proton	Neutron	Atomic Mass	
Hydrogen 1 (hydrogen)	1	0	1	
Hydrogen 2 (deuterium)	1	1 0	2	
Hydrogen 3 (tritium)	1	2	3	

Element	Name	Proton Number	Nucleon Number	Number of proton	Number of neutron
Hydrogen	Hydrogen	1	1	1	0
	Deuterium	1	12	1	1
	Tritium	1	23	1	2
	Oxygen-16	8	16	8	8
	Oxygen-17	8	17	8	9
	Oxygen-18	8	18	8	10
Chlorine	Carbon-12	6	12	6	6
	Carbon-13	6	13	6	7
	Carbon-14	6	14	6	8
	Chlorine-35	17	35	17	18
Sodium	Chlorine-37	17	37	17	20
	Sodium-23	11	23	11	12

Atomic Weight

- Corresponds to the weighted average of the atomic masses of the atom's naturally occurring isotopes.

ATOMIC STRUCTURE

- Some of the following properties

1) Chemical
2) Electrical
3) Thermal
4) Optical
are determined by electronic structure

QUANTUM NUMBERS

Principle quantum number, n

- Refer to electron shell

Subsidiary quantum number, I

- Refer to subshell / orbital

The magnetic quantum number, $m_{\text {I }}$

- Refer to spatial orientation of a single atomic orbital

Electron spin quantum number, m_{s}

- Refer to spin directions for an electron (clockwise and counterclockwise)

ELECTRONIC STRUCTURE

- Electrons have wavelike and particulate properties.
- Two of the wavelike characteristics are
- electrons are in orbitals defined by a probability.
- each orbital at discrete energy level is determined by quantum numbers.
- Quantum \#

Designation
$n=$ principal (energy level-shell)

$$
K, L, M, N, O \quad(1,2,3, \text { etc. })
$$

I = subsidiary (orbitals)
$m_{l}=$ no electron state in each
electron subshell
$m_{s}=$ spin moment on
each electron

ELECTRON SHELLS

The electron cloud that surrounded the nucleus is divided into 7 shells (a.k.a energy level) -K ($1^{\text {st }}$ shell, closest to nucleus) followed by $\mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{Q}$.

Each of the shell, hold a limited no. of electrons. E.g : K (2 electrons), L (8 electrons), M (18 electrons), N (32 electrons).

ORBITALS

- Within each shell, the electrons occupy sub shell (energy sublevels) $-s, p, d, f, g, h, i$. Each sub shell holds a different types of orbital.
- Each orbital holds a max. of 2 electrons.
- Each orbital has a characteristic energy state and characteristic shape.
- s-orbital
-spherical shape
-Located closest to nucleus (first energy level)
-Max 2 electrons

- p-orbital
- There is 3 distinct p - orbitals ($p x, p y, p z$)
- Dumbbell shape
- Second energy level
- 6 electrons

d- orbital

- There is 5 distinct d - orbitals
- Max 10 electrons
- Third energy level

Table : The number of available electron states in some of the electrons shells and subshells.

Principal Quantum Number n	Shell Designation	Subshells	Number of States	Number of Electrons	
				Per Subshell	Per Shell
1	K	s	1	2	2
2	L	s	1	2	8
		p	3	6	8
3	M	s	1	2	
		p	3	6	18
		d	5	10	
4	N	s	1	2	
		p	3	6	32
		d	5	10	32
		f	7	14	

The max. no. of electrons that can occupy a specific shell can be found using the following formula:

Electron Capacity $=2 n^{2}$

ELECTRON ENERGY STATES

Electrons...

- have discrete energy states
- tend to occupy lowest available energy state.

ELECTRON CONFIGURATION

Electron configuration - the ways in which electrons are arranged around the nucleus of atoms.

- The following representation is used :

- Example: it means that there are two electrons in the ' s ' orbital of the first energy level. The element is helium.

ELECTRON CONFIGURATION

1. Aufbau principle: Electrons enter orbital of the lowest energy first.
2. Pauli exclusion principle: Each electron state can hold no more than two electrons that must have opposite spins.

Based on the Aufbau principle, which assumes that electrons enter orbital of lowest energy first.

The electrons in their orbital are represented as follows:

$$
\begin{gathered}
1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{10}, 4 p^{6}, 5 s^{2}, 4 d^{10}, \\
5 p^{6}, 6 s^{2}, 4 f^{14}, 5 d^{10}, 6 p^{6}, 7 s^{2}, 5 f^{14}, 6 d^{10}, 7 p^{6}
\end{gathered}
$$

ELECTRON CONFIGURATION

- Most elements: Electron configuration not stable.

- Why? Valence (outer) shell usually not filled completely.

ELECTRON CONFIGURATION

- Valence electrons - those in unfilled shells
- Filled shells more stable
- Valence electrons are most available for bonding and tend to control the chemical properties
- example: C (atomic number $=6$)

How to Write the Electron Configuration of the Element?

ex: Fe - atomic \# = $261 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{6} 4 s^{2}$

	$\begin{aligned} & 4 d \\ & 4 p \end{aligned}$		N-shell $n=4$
	$3 d$	$\frac{\uparrow}{*} \uparrow \uparrow \uparrow \uparrow \uparrow$	
	$4 s$	$\frac{\uparrow 1}{\dagger}$	
Energy	$\begin{aligned} & 3 p \\ & 3 s \end{aligned}$	$\frac{\uparrow \downarrow}{\psi} \frac{\uparrow \psi}{\psi \psi} \psi$	M-shell $n=3$
	$\begin{aligned} & 2 p \\ & 2 s \end{aligned}$	$\uparrow \frac{\psi}{\psi+} \psi_{\downarrow}^{\psi}$	L-shell $n=2$
	$1 s$	\dagger	K-shell $n=1$

How to Write the Electron Configuration of the Element?

EXERCISE

Write the electron configuration of the following species:

1. Ca (20 e)
2.0 (8 e)
2. Cu (29 e)
3. $\mathrm{O}^{2-}(\mathrm{O}=8 \mathrm{e})$
4. $\mathrm{Fe}^{2+}(\mathrm{Fe}=26 \mathrm{e})$

Element	Symbol	Atomic Number	Electron Configuration

Basics of the PERIODIC TABLE

periodic: a repeating pattern
table: an organized collection of information

Periodic Table (P.T.)

An arrangement of elements in order of atomic number; elements with similar properties are in the same group.

The periodic table below is a simplified representation which usually gives the :

Two main classifications in P.T.

1)period: horizontal row on the P.T.

- Designate electron energy levels

2) group or family: vertical column on the P.T.

Groups to know

Fig. : The periodic table of the elements.

5 Periodic Trends to Know

Periodic trend: property of an element that can be predicted by position on Periodic Table.

Trend \#1:

Elements in the same group have similar properties because they have same number of valence e- (e- in outermost energy level).

$\begin{gathered} \hline \mathrm{H} \\ 1 \end{gathered}$							$\begin{gathered} \mathrm{He} \\ 2 \end{gathered}$
$\begin{array}{r} \hline \mathrm{Li} \\ 2,1 \end{array}$	$\begin{aligned} & \hline \mathrm{Be} \\ & 2,2 \end{aligned}$	$\begin{gathered} \mathrm{B} \\ 2,3 \end{gathered}$	$\begin{aligned} & \mathrm{C} \\ & 2,4 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 2,5 \end{aligned}$	$\begin{gathered} 0 \\ 2,6 \end{gathered}$	$\begin{gathered} \mathrm{F} \\ 2,7 \end{gathered}$	$\begin{aligned} & \mathrm{Ne} \\ & 2,8 \end{aligned}$
$\begin{gathered} \mathrm{Na} \\ 2,8,1 \end{gathered}$	$\begin{aligned} & \mathrm{Mg} \\ & 2,8,2 \end{aligned}$	$\begin{gathered} A \\ 2,8,3 \end{gathered}$	$\begin{gathered} \mathrm{Si} \\ 2,8,4 \end{gathered}$	$\begin{gathered} \mathrm{P} \\ 2,8,5 \end{gathered}$	$\begin{gathered} 5 \\ 2,6,6 \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ 2,8,7 \end{gathered}$	$\begin{gathered} A \quad A \\ 2,8,8 \end{gathered}$
$\begin{gathered} K \\ 2,8,8,1 \end{gathered}$	Ca						

The number of valence eincreases as you go from left to right across a period; there is no change going down a group.

Trend \#2: ATOMIC RADIUS

It is a distance from center of nucleus to valence e- energy level.

- Atoms get smaller as you go across (left to right) a period.
- Caused by increasing \# of protons in nucleus.
- More protons pull e-closer = smaller radius
- Atoms get larger as you go down a group.
- Each new period represents a new energy level.
- More energy levels = larger radius

Trend \#3: IONIZATION ENERGY (I.E.)

It is an energy required to remove one e-from a neutral atom.

$$
\mathrm{Eg}: \mathrm{Na}+\text { energy } \rightarrow \mathrm{Na}^{1+}+\mathbf{e}^{-}
$$

- Down a group, I.E. decrease

- e- are removed more easily from energy levels farther from the nucleus.
- Across a period, I.E. increase
- e- are removed less easily from atoms which are close to have filled energy levels.

Atoms are more stable if they have filled energy levels; therefore, atoms close to filling their energy levels will not easily give up their e -.

Trend \#4 : ATOMIC MASS

- Down a group, atomic mass increase
- Protons (and e-) are added, increasing the mass.
- Across (left to right) a period, atomic mass increase
- The same reason.

$\underset{1.0079}{\mathbf{H}_{1}^{1}}$	11.											III A	IVA	VA	VI A	VII A	
$L_{6.9}^{3}$												$\underset{10.811}{\mathbf{B}^{5}}$	${\underset{12}{6}, 011}_{6}$		$\widehat{C}_{15.9994}^{8}$	$\stackrel{9}{\mathbf{F}}$	
	Mg_{24}^{12}	III B	IV B	V B	VI B	VII B		VIII		\| B	$1 / \mathrm{B}$			$\underset{30.97376}{\mathbf{P}^{15}}$			
	$\mathrm{C}_{40.08}^{20}$	${ }_{4}^{21} \mathrm{C}$					$\underset{58.847}{\mathrm{Fe}_{\mathrm{e}}^{26}}$	$\mathrm{Co}_{68,9332}^{27}$	$\underset{58.69}{28}$		$7_{65.39}^{30}$						$\begin{gathered} \mathbf{K r}_{8380}^{38} \end{gathered}$
Rb 85.4378	$\mathbf{S r}_{87}^{38}$	$\begin{array}{\|c\|} \hline \mathbf{Y}_{89}^{39} \\ \hline \end{array}$	Z_{91224}^{40}						${ }_{106.42}^{\text {Pd }}$		${ }^{48} \mathrm{~d}$ 112.41	$\ln _{114: 82}^{49}$		$\mathbf{S}_{121.75}^{51}$	$\mathrm{T}_{127.80}^{52}$	$\begin{array}{\|c\|} \hline 63 \\ 128.9047 \\ \hline \end{array}$	$\underset{131.30}{\mathbf{X 4}}$
	$\begin{aligned} & \hline 56 \\ & \text { Ba } \\ & 137.33 \\ & \hline \end{aligned}$	$L_{138.33}^{57}$	${\underset{178.49}{72}}_{\text {Hf }^{72}}$		$\underset{183.85}{74}$						$\underset{200 .}{\mathrm{He}}$	$\mathrm{T}_{204.363}^{\mathrm{B} 1}$			$\stackrel{\mathbf{P}^{84}}{(209)}$	85 At (210)	
$\stackrel{87}{\mathrm{~F}_{(223)}}$		\mathbf{A}_{627}^{89}		Ce 140.12	${ }^{59} \mathrm{Pr}$ 140.8077	Nd 144.24	Pm (145)	${ }^{62}$ m 1504	${ }^{63}$ 151.565	Gd 157.25	Tb 158.9254	${ }_{162.50}^{66}$	Ho 164.8303	${\underset{167.26}{68}}_{\mathbf{E r}^{2}}$	Tm 168.8342		$\mathbf{L}_{174.967}^{71}$
									$\mathrm{Am}_{(24306)}^{96}$								

Increasing atomic mass

Trend \#5 : Electronegativity (EN)

IA																	0
$\begin{gathered} \mathrm{H} \\ 2.1 \end{gathered}$	IIA											IIIA	IVA	VA	VIA	VIIA	He
Li	Be											B	C	N	0	F	Ne
1.0	1.5											2.0	2.5	3.1	3.5	4.1	-
Na	Mg							VIII				AI	Si	P	S	Cl	Ar
1.0	1.3	IIIB	IVB	VB	VIB	VIIB		VII		IB	IIB	1.5	1.8	2.1	2.4	2.9	-
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.9	1.1	1.2	1.3	1.5	1.6	1.6	1.7	1.7	1.8	1.8	1.7	1.8	2.0	2.2	2.5	2.8	-
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.9	1.0	1.1	1.2	1.3	1.3	1.4	1.4	1.5	1.4	1.4	1.5	1.5	1.7	1.8	2.0	2.2	X
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.9	0.9	1.1	1.2	1.4	1.4	1.5	1.5	1.6	1.5	1.4	1.5	1.5	1.6	1.7	1.8	2.0	-
Fr	Ra	Ac	Lanthanides: 1.0-1.2														
0.9	0.9	1.0															
Actinides:																	

Smaller electronegativity
Larger electronegativity

Electropositive elements:
Readily give up electrons
to become + ions.

Electronegative elements: Readily acquire electrons to become - ions.

Bonding Forces and Energies
 - Considering the interaction

 between two isolated atoms as they are brought into close proximity from an infinite separation.- At larger distances, the interactions are negligible.
- As the atoms approach, each exerts forces on the other.
- Attractive
- Repulsive
- Ultimately, the outer electron shells of the two atoms begin to overlap, and a strong repulsive force comes into play.

Bonding Models

- Bonding holds atoms together to form solids materials
- In solids, atoms are held at preferred distances from each other (equilibrium distances)
- Distances larger or smaller than equilibrium distances are not preferred. Equilibrium spacing r_{0} is approximately 0.3 nm
- Consequently, as atomic bonds are stretched, atoms tend to attract each other, and as the bonds are compressed, atoms repel each other.
- Simple bonding models assume that the total bonding results from the sum of two forces: an attractive force $\left(\mathrm{F}_{\mathrm{A}}\right)$ and a repulsive $\left(\mathrm{F}_{\mathrm{A}}\right)$.
the net force $F_{N}=F_{A}+F_{R}$
- The repulsive force dominates at small distances, and the attractive force dominates at larger distances. At equilibrium they are just equal.

Bonding Forces and Energies

- It is convenient to work with energy than forces.
- Bonding energy (also called interaction energy or potential energy) between two isolated atoms at separation r is related to the force by

$$
\begin{aligned}
E(r) & =\int_{\infty}^{r} F\left(r^{\prime}\right) d r^{\prime} \\
& =\int_{\infty}^{r}\left(F_{A}\left(r^{\prime}\right)+F_{R}\left(r^{\prime}\right)\right) d r^{\prime} \\
& =E_{A}(r)+E_{R}(r)
\end{aligned}
$$

Bonding energy between two atoms

- The interaction energy at equilibrium is called the bonding energy between the two atoms.
- To break the bond, this energy must be supplied from outside.
- Breaking the bond means that the two atoms become infinitely separated.
- In real materials, containing many atoms, bonding is studied by expressing the bonding energy of the entire materials in terms of the separation distances between all atoms, see later discussion.

PRIMARY AND SECONDARY ATOMIC BONDING

- The forces of attraction that hold atoms together are called chemical bonds which can be divided into 2 categories :

1) Primary Interatomic Bonding Metallic, ionic and covalent

2) Secondary Atomic Bonding Van der Waals

Metallic atoms		Nonmetallic atoms
$\downarrow \downarrow$	$\downarrow \downarrow$	$\downarrow \downarrow$
Metallic bonds	lonic bonds	Covalent bonds

- Chemical reactions between elements involve either the releasing/receiving or sharing of electrons.

Bonding

Primary bonding:

Ionic (transfer of valence electrons)
Covalent (sharing of valence electrons, directional)
Metallic (delocalization of valence electrons)

Secondary or van der Waals Bonding:

(Common, but weaker than primary bonding)
Dipole-dipole
H-bonds
Polar molecule-induced dipole
Fluctuating dipole (weakest)

PRIMARY INTERATOMIC BONDING 1) IONIC BONDING

- Occurs between + and - ions.
- Requires electron transfer.
- Large difference in electronegativity required.
- Example: NaCl

- Example: NaCl

IONIC BONDING

- Properties :
\checkmark Solid at room temperature (made of ions)
\checkmark High melting and boiling points
\checkmark Hard and brittle
\checkmark Poor conductors of electricity in solid state
\checkmark Good conductor in solution or when molten
- Predominant bonding in Ceramics

Give up electrons

TYPES OF CHEMICAL BONDS

\#1: IONIC

2) COVALENT BONDING

How is covalent bonding formed??

- Electrons are shared to form a bond.
- Most frequently occurs between atoms with similar electronegativities.
- Often found in:
- Molecules with nonmetals $\left(\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}\right.$, etc)
- Molecules with metals and nonmetals (aluminum phosphide (AIP))
- Elemental solids (diamond, silicon, germanium)
- Compound solids (about column IVA) (gallium arsenide - GaAs, indium antimonide - InSb and silicone carbide - SiC).
- Example: CH_{4}

C: has 4 valence e, needs 4 more
H : has 1 valence e, needs 1 more

Electronegativities are comparable.

COVALENT BONDING

Properties

- Gases, liquids, or solids (made of molecules)
- Poor electrical conductors in all phases
- Variable (hard, strong, melting temperature, boiling point)

- Molecules with nonmetals
- Molecules with metals and nonmetals
- Elemental solids
- Compound solids (about column IVA)

TYPES OF (HEMICAL BONDS

\#2: (OVAIENT

3) METALLIC BONDING

How is metallic bonding formed??

- Occur when some electrons in the valence shell separate from their atoms and exist in a cloud surrounding all the positively charged atoms.
- The valence electron form a 'sea of electron'

Arises from a sea of donated valence electrons

- Found for group IA and IIA elements
- Found for all elemental metals and its alloy

3) METALLIC BONDING

Positive charged metallic ion

METALLIC BONDING

Properties:

\checkmark Good electrical conductivity-cloud electron are free to move to conduct electricity
\checkmark Good heat conductivity
\checkmark Ductile

TYPES OF (HEMICAL BONDS

sECONDARY INTERATOMIC BONDING

VAN DER WAALS

- Arise from atomic or molecular dipoles

- Three bonding mechanism
- Fluctuating Induced Dipole Bonds
- Eg: Inert gases, symmetric molecules $\left(\mathrm{H}_{2}, \mathrm{Cl}_{2}\right)$

- Polar molecule-Induced Dipole Bonds
- Asymmetrical molecules such as $\mathrm{HCl}, \mathrm{HF}$
-general case:

secondary bonding

-ex: liquid HCl

secondary bonding

- Permanent Dipole Bonds

- Hydrogen bonding
- Between molecules
- H-F, H-O, H-N

Hydrogen bonding between water molecules

Summary of BONDING

Type	Bond energy	Melting point	Hardness	Conductivity	Comments
ionic bonding	Large (150$370 \mathrm{kcal} / \mathrm{mol}$	Very high	Hard and brittle	Poor -required moving ion	Nondirectional (ceramic)
Covalent bonding	Variable(75- $300 \mathrm{kcal} / \mathrm{mol}$ Large - Diamond Small - Bismuth	Variable Highest diamond (>3550) Mercury (-39)	Very hard (diamond)	poor	Directional (Semiconductors, ceramic, polymer chains)
metallic bonding	Variable(25- $200 \mathrm{kcal} / \mathrm{mol}$) Large- Tungsten Small- Mercury	Low to high	Soft to hard	excellent	Nondirectional (metal)
Secondary bonding	Smallest	Low to moderate	Fairly soft	poor	Directional inter-chain (polymer) inter-molecular

LEARNING OBJECTIVE

You should be able:

* Describe an atomic structure
* Configure electron configuration
* Differentiate between each atomic bonding
* Briefly describe ionic, covalent, metallic, hydrogen and van der waals bonds
* Relate the atomic bonding with material properties

